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A new intersection between reaction chemistry and electronic circuitry is emerging from the ultraminiaturization of
electronic devices. Over decades chemists have developed a nuanced understanding of stereoelectronics to establish how
the electronic properties of molecules relate to their conformation; the recent advent of single-molecule break-junction
techniques provides the means to alter this conformation with a level of control previously unimagined. Here we unite
these ideas by demonstrating the first single-molecule switch that operates through a stereoelectronic effect. We
demonstrate this behaviour in permethyloligosilanes with methylthiomethyl electrode linkers. The strong σ conjugation in
the oligosilane backbone couples the stereoelectronic properties of the sulfur–methylene σ bonds that terminate the
molecule. Theoretical calculations support the existence of three distinct dihedral conformations that differ drastically in
their electronic character. We can shift between these three species by simply lengthening or compressing the molecular
junction, and, in doing so, we can switch conductance digitally between two states.

The development of single-molecule conductance switches is
crucial to the realization of nanoscale electronic devices in
which molecules will serve as components in electrical circui-

try1,2. Controlling the electronic properties of single molecules in the
context of electronic devices is a relatively new field of interest;
however, chemists have studied the electronic properties of mol-
ecules in the context of chemical reactivity over many decades.
Incorporating the paradigms of reaction chemistry into the design
of molecular electronic components can provide a tremendous
impetus to advance the field of molecular electronics. For
example, chemical principles such as photocyclization3, tautomeri-
zation4 and cross-conjugation5 have inspired the genesis of many
new types of molecular electronic components6–8.

Here we introduce the first example of a molecular electronic
switch that operates through a stereoelectronic effect.
Stereoelectronic effects are fundamental to reaction chemistry
because they determine how the properties and reactivities of
molecules depend on the relative spatial orientations of their elec-
tron orbitals9. The vast stereoelectronics knowledge base can there-
fore serve as a tremendous resource in controlling electronics at the
single-molecule level by directing molecular conformation.
Although conformational effects have been reported in other
single-molecule devices, none of these reported components have
demonstrated digital switching between conductance states by con-
trolling bond rotation, as is shown here10–15.

We utilize the sub-ångström level of control in a scanning
tunnelling microscope-based break-junction (STM-BJ) technique
to manipulate specific dihedral angles in permethyloligosilanes
with aurophilic methylthiomethyl electrode contacts (Fig. 1). We
can increase the conductance by elongating the molecular junction
and decrease the conductance by compressing the electrodes;
each terminal (C–S–C–Si) dihedral angle that couples the elec-
trode-linker orbital into the σ framework acts as a gate to control
conductance. We find an analogy in the computational studies of
Franco et al., who predicted the same principle in a cyclophane in
which junction elongation opens a more conductive channel for
transport16. The switching that we see is binary in the sense that

there are only two discrete conductances. We see no evidence of
intermediate conductance values, and therefore the switching is
faster than the microsecond time resolution of the STM.

Results and discussion
Synthetic design. Figure 2 shows the iterative synthesis we
devised for the [SiMe2]n oligosilanes (n = 1–10) terminated by
methylthiomethyl linkers (Si1–Si10). We grew α,ω-diphenyl‐
oligosilane 2 outwards, two silicon subunits at a time, by treating
α,ω-dichlorooligosilane 3 with two equivalents of dimethyl-
phenylsilyl magnesium 117. Protodesilylation of α,ω-diphenyloligo-
silane 2 under acidic conditions furnished the chain-extended
α,ω-dichlorooligosilane 318. The odd and even series were built

Si1
Si4

Si10

Si7

Figure 1 | Structures of oligosilanes Si1, Si4, Si7 and Si10 calculated at the
B3LYP/6-31G** level. The backbone (Si–Si–Si–Si) dihedral angles are held to
180° to emphasize the length difference across the oligosilane series.
Si, orange; C, teal; S, yellow; H, grey.
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from the commercially available mono- and disilanes, respectively.
We functionalized α,ω-dichlorooligosilane 3 with electrode linkers
(CH2SMe) in two steps. We installed the halomethyl groups in
α,ω-bis(halomethyl)oligosilane 4 by generating the halomethyllithium
in the presence of 319,20. We obtained the final α,ω-bis(methyl-
thiomethyl)oligosilanes Si1–Si10 from nucleophilic substitution
of the primary halide with sodium thiomethoxide21.

STM-BJ conductance measurements. We measured the single-
molecule conductance of Si1–Si10 using the STM-BJ technique (see
the Supplementary Section V for more details)22. The STM-BJ
measurement proceeds as follows: point contacts between the Au
STM tip and the substrate electrodes are repeatedly broken and
formed in a solution of the target molecule (0.05–1.00 mM in 1,2,4-
trichlorobenzene) at room temperature and under ambient
conditions. After the Au–Au point contact is broken, aurophilic
thiomethyl groups23 on the molecule bridge the electrodes to form
an Au–molecule–Au junction. Conductance is measured across the
gap as a function of the tip–substrate displacement, and the
resulting traces reveal molecule-dependent plateaus that signify
junction formations with conductance values below G0 (2e2/h), the
quantum of conductance, where e is charge of an electron and h is
Planck’s constant24. The molecular junction breaks once the tip–
substrate electrode gap becomes too wide for the molecule to
coordinate to both electrodes. Thousands of molecular junctions are
analysed using logarithm-binned one-dimensional (1D) and
two-dimensional (2D) histograms. 1D histograms provide a
distribution of all measured conductance values from all traces; 2D
histograms sum all the conductance values and retain the relative
displacement information25.

The 1D conductance histograms for Si1–Si10 are compiled in
Fig. 3a. All the oligosilanes (n = 1–10) gave the same general peak
shape: a sharp maximum at higher conductance followed by a
broad tail at lower conductance. There is an exponential decrease
in conductance as n increases; we quantified this decrease by deriv-
ing the length-dependent conductance decay value (β)26,27.
Figure 3b shows a plot of the conductance maxima from the 1D his-
tograms against each oligomer’s effective molecular length (L). L is
defined as the distance between the two distal methylenes in each
density functional theory (DFT)-optimized structure. We obtain β
by fitting a line through these points on a semi-log scale.
Figure 3b shows that the conductances of Si1–Si10 fit to a line
with β = 0.39 ± 0.01 Å−1 (more detail regarding the different β
values for oligosilanes with thioanisole and methylthiomethyl con-
tacts is given in the Supplementary Section II, Part I). As a compari-
son, linear alkanes terminated with thiomethyl linkers have a β value

of 0.70 ± 0.03 Å−1 (ref. 23). This difference arises from the increased
σ delocalization that occurs in Si compared with C, as bonding
orbitals increase in size and energy down the periodic table28,29.
As we show below, this additional delocalization in the silanes
enables us to observe different conductance values for two distinct
sets of rotational isomers in a single molecule.

We defined L in this study as the distance between the distal
methylenes in Si1–Si10 to compare the results with our previous
study of oligosilanes that have thioanisole linkers, in which L was
defined as the distance between the two aryl carbons that terminated
the silane chain26. By extrapolating our fit to L = 0, we found that the
contact resistance of the methylthiomethyl linker (0.95 MΩ) was
two orders of magnitude smaller than that of our previous thioani-
sole linker (83 MΩ). The low contact resistance of the methylthio-
methyl linkers enabled us to measure the longer oligosilanes in
this study and, more importantly, to show that the conductance
mechanism in these longer silane chains occurs through non-res-
onant transport, as evidenced by the clear exponential dependence
of conductance with length30.

Analysis of switching behaviour. For each silane (Si1 to Si10) a
large fraction of traces showed an abrupt jump from a lower to a
higher value of conductance as the tip–substrate electrode gap
widened. Although a similar effect has been observed before in
other systems31–33, it is uncommon; molecular junctions do not
typically demonstrate this inverted conductance behaviour.
Figure 3c demonstrates this effect in individual traces. 2D
histograms allow us to interpret conductance as a function of
electrode displacement. We compiled our 2D histograms from
traces that exhibited a switch from low to high conductance.
Figure 3d depicts such a histogram for Si4, in which switching
from low to high conductance occurs on elongation in 50% of
6,000 total traces in which we observe a clear molecular
conductance plateau (Supplementary Fig. 1 gives the 2D
histograms for the other oligosilanes). We defined the point of
zero relative displacement as the point along the elongation
trajectory at which switching occurs (Fig. 3d). Aligning the traces
to the switching event enabled us to sort the histogram into two
regimes: the lower-conducting (low G) pre-switch state (where
x < 0) and the higher-conducting (high G) post-switch state
(where x > 0). The inset of Fig. 3d shows the 1D histograms that
resulted from this separation of the low and high G states (grey
and black lines, respectively). The high G peak is sharp and the
low G peak is broad. The inset reveals that the sharp peak and
broad tail characteristic of each oligosilane arises from the
superposition of these two distinct conductance states: in each
case a broad low-conductance peak and a sharp high-conductance
peak combine to give the asymmetric peak seen in Fig. 3a. The
conductances of the low and high G peaks for each oligosilane are
plotted against molecular length in Supplementary Fig. 2. Both
states decay across the series with the same β value, but in each
member of the series the two conductance values differ by about a
factor of two.

These molecular switches are robust; we can exercise them in real
time. We performed five consecutive compression–elongation
cycles in Si6 in which we compressed and retracted the Au–Si6–Au
junction near the point of full extension (Fig. 3e,f ). In each cycle
we elongated the molecular junction fully, held the junction in
place for 50 ms, compressed the electrodes by 1.9 Å and then held
the junction at this new displacement for another 50 ms (we
chose the 1.9 Å distance by which we compressed and elongated
these junctions from the 2D histogram shown in Supplementary
Fig. 1, which shows the extent of the high G state). Figure 3e
shows a compilation of our results over 10,600 traces that started
at a conductance that corresponded to the peak shown in the
histogram in Fig. 3a. The majority of these traces switched
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Figure 2 | Iterative synthesis of oligosilanes terminated with
methylthiomethyl end groups. More detail on the synthetic methods used
here is given in the Supplementary Sections III and IV. i, Li, THF, 0 °C;
iPrMgCl, 0 °C. ii, 3, THF, 0 °C; n = 3–10 were synthesized in 60–84% yield.
iii, For n = 3 and 4, HCl, AlCl3, toluene, r.t.; for n = 5–10, CF3SO3H,
dichloromethane, 0 °C; NEt3·HCl, Et2O, 0 °C; 64–77% yield. iv, For
n = 1 and 2, LiBr, CH2Br2, n-BuLi, THF, −78 °C; for n = 3–10, CH2BrCl, n-BuLi,
THF, −78 °C; 48–93% yield. v, NaSMe, EtOH, 0 °C; 11–86% yield.
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between a high and low state, as is clearly visible in the 2D histo-
gram. Further, we observed a ‘burn in’ effect in which switching
between the states became sharper with each additional com-
pression–elongation cycle. This behaviour suggests that the oscil-
lation cycles are training34 our device by reorganizing the junction
into a new environment in which it behaves more effectively as a
switch. Clean switching from the first to last elongation–
compression cycle occurs in about one-third of traces (Fig. 3f ).
We performed a single compression–elongation cycle on Si6 and
compared our results with those for 1,8-bis(thiomethyl)octane
(C8), which has the same –CH2SMe linker as Si6 but an aliphatic
carbon backbone between the linkers (Supplementary Fig. 3).
Although the Au–Si6–Au junction demonstrates two-state conduc-
tance switching with the conductance increasing on elongation, the
Au–C8–Au junction maintains a relatively constant conductance
over the course of the cycle and shows only a small decrease in con-
ductance on elongation, probably because of a decrease in the
through-space conductance component35–38.

We can begin to understand why switching occurs as the junction
elongates by comparing the 2D histogram characteristics of the low
and high G states across the oligosilane series (Supplementary
Fig. 1). First, conductance changes by a factor of two for all oligosi-
lanes regardless of the length of the Si chain. Second, the length of
the conductance-plateau characteristic of the low G state increases
from Si1 to Si10 (1 Å for Si1 to 10 Å for Si10), whereas that of the
high G state stays relatively constant (1.5–2.0 Å). The consistency in
the switching ratio and high G length across the entire oligosilane
series suggests that the high G state arises from a molecular feature
that is common to all oligomers and invariant among them. We
therefore do not believe that the switching we observed here arose
from sudden rotations of the internal Si–Si–Si–Si dihedral geometries
(see the Supplementary Section II, Part II for more analysis)39–41.

Given these details and the stereoelectronics of bonding around
sulfur42, we hypothesize that the stereoelectronic effects of the two
terminal dihedral angles (H3C–S–CH2–SiMe2–) that terminate each
oligosilane are fundamentally responsible for the switching we
observed here. These dihedral angles should be particularly suscep-
tible to changes in the tip–substrate distance because they involve
gold atoms from the electrodes exerting torque on the molecule via
the sulfur lone pair.

DFT analysis.We examined the effect of electrode displacement on
molecular geometry in a DFT model system (see the Supplementary
Section VI for details)43. In this model we attached single Au atoms
to both sulfur atoms in Si4 to simulate the bonding to Au electrodes
and varied the Au–to–Au distance. In the STM-BJ experiment the
two Au electrodes perform two distinct, albeit closely related,
functions: (1) they provide the electrical environment through
which the current passes, and (2) they dictate the geometry of the
included molecule. Our computational model describes both
features. We first performed geometry optimizations to determine
how the lowest energy conformation of the molecule changes on
increasing the Au–Au distance. To model the influence that the
Au electrodes have on the geometry of the molecule, we
considered the [Au–Si4–Au]2+ model system (removing two
electrons from the complex) to increase the Au–S bond strength
and mimic binding to a slightly positive undercoordinated Au
atom on an Au electrode23.

Model calculations on the free trimethyl(methylsulfanylmethyl)-
silane (Me–S–CH2–SiMe3) molecule demonstrated two isoenergetic
local minima at 90° and 270° (ortho) and a global minimum at 180°
(anti), as expected from simple stereoelectronic considerations
(Supplementary Fig. 4). We therefore set both dihedral angles to
anti in our starting geometry, optimized the [Au–Si4–Au]2+
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Figure 3 | Conductance analysis of the oligosilane series. a, Logarithm-binned 1D histograms for Si1–Si10. The arrows denote the peak maxima used for b.
All the histograms are normalized by the number of traces used to construct the histograms. b, Conductance peak values for Si1–Si10 plotted against the
effective molecule length give the decay constant β. c, Individual traces from the measurement of Si4 as the electrode displacement increases. Sample traces
are offset along the displacement axis for clarity. d, 2D conductance–displacement histogram for Si4 compiled from traces that demonstrate switching. The
inset is a compilation of the pre-switching (black line) and post-switching (grey line) regions into 1D histogram plots; the total 1D histogram for Si4 (red line)
is superimposed for comparison. e,f, 2D histograms of compression–elongation cycles for the Au–Si6–Au junction. A modified piezo ramp (black line) is
applied to induce switching. Traces are aligned to the beginning of the first hold period. e, 2D histogram constructed from all traces for which a molecule
remains in the junction during all the hold periods. No other selection was applied. Switching sharpens with each oscillation. f, Clean switching from the first
to last oscillation occurs in 33% of traces.
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complex without constraint and defined the resulting Au–Au
distance as the elongation = 0 point (Fig. 4b,c). We then performed
a series of calculations to understand the response of the Si4 bridge
to changes in the Au–Au gap. To obtain the lowest energy structure
at each Au–Au distance, we varied the (fixed) Au–Au distance in
0.25 Å increments while allowing the rest of the molecule to
optimize its geometry without additional constraints.

These geometry optimizations confirm that the terminal dihedral
orientation depends strongly on the distance between the Au
atoms (that is, the size of the interelectrode gap). Just as in the
free Me–S–CH2–SiMe3 molecule, there are two distinct anti and
ortho Me–S–CH2–SiMe2– dihedral geometries in our Au–Si4–Au
model. The anti (A) geometry places the Me–S bond antiperiplanar
(Au–S bond is perpendicular) to the CH2–SiMe2 bond; the
ortho (O) geometry places the Me–S bond perpendicular (Au–S
bond is antiperiplanar) to the CH2–SiMe2 bond (Fig. 4a).
The results of our geometry optimizations suggest that there are
two competing sources of strain: steric strain from the S–CH2

σ-bond stereochemistry and mechanical strain from electrode
separation. Steric strain favours the anti geometry because it
minimizes steric repulsion between the bulky S-methyl and
SiMe2 groups. Mechanical strain pulls the S–Au bond into an
antiperiplanar position to adopt the longest possible molecular
geometry, and thereby forces the S-methyl group into an ortho
relationship with the SiMe2 group. As the mechanical strain starts
to eclipse the steric strain, the two terminal Me–S–CH2–SiMe2
dihedral angles in the lowest-energy Au–Si4–Au geometries
change, as shown in Fig. 4a, from A–A (purple) to O–A (yellow)
to O–O (green).

The competing effect of steric versus mechanical strain on the
molecular geometry is evident in Fig. 4b. We fixed the terminal
dihedrals to A–A, O–A and O–O to demonstrate how the relative
energies of these three configurations change as a function of Au–
Au distance. At short distances the steric strain has a stronger influ-
ence on molecular geometry: the A–A configuration is the lowest in
energy and the energy difference between each conformational state
is relatively small. As the distance between the Au atoms increases
and more mechanical strain is imposed on the molecule, the O–O
configuration becomes the most energetically stable state and the
energy differences between the three conformers become
relatively large.

To determine the trends in conductance for the lowest-energy
structures that occur at each Au–Au distance, we calculated the
energy splitting between the frontier molecular orbitals of the
neutral Au–molecule–Au complex. The frontier orbitals are pre-
dominantly of Au 6s and S lone-pair antibonding character and
are tunnel-coupled through the molecular backbone, which results
in a symmetric and antisymmetric pair with a splitting of 2t,
where t is defined as the tunnel coupling parameter27. The square
of the tunnel coupling has been shown to be proportional to mol-
ecular conductance for many different systems27,44–50. We plot in
Fig. 4c the square of the tunnel coupling (4t2) for the Au–Si4–Au
geometries relative to the elongation = 0 point. Conductance reflects
the strength of coupling between the two gold electrodes through
the molecule. We have shown previously that the Si–Si σ-bond fra-
mework provides the orbital through which the electron tunnels in
an oligosilane26. Considering these two factors, one would predict a
lower conductivity for the A–A and O–A configurations because the
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anti dihedral describes a S–Au bond that is perpendicular to the
plane of the Si–Si bonds and therefore poorly coupled to the rest
of the molecule. Conversely, one would predict higher conductivity
for the O–O configuration because both S–Au bonds are aligned
with the neighbouring C–Si bonds, and therefore the entire set of
Si–Si bonds in the molecule.

This intuition rationalizes why the tunnel coupling remains con-
stant as the minimum geometry transitions from A–A to O–A, but
increases significantly as the molecule transitions from O–A to O–O
(Fig. 4c). In the O–O state, both Au atoms are finally aligned for
coupling through the strong σ conjugation in the silane backbone.
This interpretation implies that, even though there are three confor-
mational states (A–A, O–A and O–O), we only observe a two-state
conductance system because the A–A and O–A conformers have a
similar tunnel coupling and are therefore indistinguishable in
the junction.

We applied the same DFT treatment to 1,6-bis(thiomethyl)
hexane (C6) and found that the same conformational shift from
A–A to O–A to O–O states occurred as we increased the Au–Au dis-
tance; however, the tunnel coupling remained constant because the
poorly conjugated C–C σ bonds did not improve the coupling
between the Au atoms in the O–O dihedral configuration
(Supplementary Fig. 5). The experimental implication is that, even
though this three-state conformational system exists in alkanes, we
only observe a one-state electronic system because all three dihedral
conformers are indistinguishable in conductance. The strong σ con-
jugation in the oligosilane backbone electronically couples the linker
dihedrals that terminate each end of the molecule—we can therefore
resolve the conductances of two different sets of rotational isomers
that arise from the stereoelectronics of the sulfur–methylene σ bond
and switch between them by stretching and compressing our
molecular junction.

Conclusions
The canons of σ stereoelectronics were developed to understand the
relationship between conformation and electronics in aliphatic
systems. However, the weak conjugation in C–C σ bonds diminishes
the utility of stereoelectronics in controlling charge transport
through aliphatic wires. In this study, we demonstrate that the
strong conjugation in Si–Si σ bonds enables us to observe and
exploit stereoelectronic effects in single-molecule junctions. The oli-
gosilane switches developed here are the first in a new class of
stereoelectronic device components; these switches function from
the stereoelectronic properties of the sulfur–methylene σ bond.
We can transpose the σ-stereoelectronic models originally devised
for alkanes to silanes because they share a similar tetrahedral
bonding geometry. We therefore envision that many more silicon-
based electronic components inspired from the expansive σ-stereo-
electronics literature will soon be realized.

Methods
All DFT computations in this manuscript were carried out with Jaguar (version 8.3,
Schrodinger). All synthetic methods, characterization, STM-BJ experiments and
analysis details, and DFT computational details are given in the Supplementary
Information.

Received 15 October 2014; accepted 9 January 2015;
published online 16 February 2015
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