Supplementary Information

Aromaticity Decreases Single-Molecule Junction Conductance

Wenbo Chen, ${ }^{1}$ Haixing Li, ${ }^{2}$ Jonathan R. Widawsky, ${ }^{2}$ Chandrakumar Appayee, ${ }^{1}$ Latha Venkataraman, ${ }^{2 *}$ and Ronald Breslow ${ }^{1 *}$
${ }^{1}$ Department of Chemistry, Columbia University
${ }^{2}$ Department of Applied Physics and Mathematics, Columbia University

Contents:

1. Synthesis Information, NMR and X-Ray Structure Determination
2. Measurement, Data Analysis and Additional Data
3. References

Synthesis Information:

Chemicals: Solvents, inorganic salts, and organic reagents were purchased from commercial sources and used without further purification unless otherwise mentioned.

Chromatography: Merck pre-coated 0.25 mm silica plates containing a 254 nm fluorescence indicator were used for analytical thin-layer chromatography. Flash chromatography was performed on 230-400 mesh silica (SiliaFlash ${ }^{\circledR}$ P60) from Silicycle.Spectroscopy: NMR spectra were obtained on a Bruker DPX 300 or 400 MHz spectrometer. Spectra were analyzed with the MestreNova Software (Version 6.1). CI-MS spectra were taken on a Nermag R-10-10 instrument. Compounds $\mathbf{1 , 2 , 3}$ were prepared by the Sonogashira coupling of 4-ethynylaniline with 2,5-dibromofuran, 2,5-dibromothiophene and 1a, respectively. 2,5-bis(4-aminophenyl)furan $(5)^{1}, 2,5$-bis(4-aminophenyl)thiophene $(\mathbf{6})^{2}$ were prepared according to the known procedures.

1,4-Bis[(trifluoromethanesulfonyl)oxy]-5,5-dimethylcyclopenta-1,3-diene (1a)

To a stirred solution of 2,2-dimethylcyclopentane-1,3-dione ${ }^{3}$ ($989 \mathrm{mg}, 7.85 \mathrm{mmol}$) and N - 5 -chloro-2-pyridyl)triflimide(Comins' reagent) $)^{4}(6.55 \mathrm{~g}, 16.6 \mathrm{mmol})$ in dry THF $(45 \mathrm{~mL})$ at $-78^{\circ} \mathrm{C}$, a solution of potassium hexamethyldisilazide (0.5 M in toluene, 17.5 mmol) was added dropwise. The reaction mixture was stirred at this temperature for 1 h and then it was slowly warmed to room temperature. The mixture was diluted with hexane, washed with water, $10 \% \mathrm{NaOH}$ and brine. The organic phase was dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and concentrated under reduced pressure. The crude compound was further purified by flash chromatography (hexane) to give the title compound 1a as a solid ($1.62 \mathrm{~g}, 52 \%$). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 6.04(\mathrm{~s}, 2 \mathrm{H}), 1.29(\mathrm{~s}, 6 \mathrm{H})$; ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 154.4,118.5\left(\mathrm{q}, ~ J=318.8 \mathrm{~Hz}\right.$), 110.8, 48.9, 18.9; ${ }^{19} \mathrm{~F}$ NMR (376 $\mathrm{MHz}, \mathrm{CDCl}_{3}$) δ-72.2 (s).

1,4-bis(4-aminophenylethinyl)-5,5-dimethylcyclopenta-1,3-diene (1)

Degassed $\mathrm{Et}_{3} \mathrm{~N}$ ($987 \mathrm{mg}, 9.77 \mathrm{mmol}, 4.5 \mathrm{eq}$) and 4-ethynylaniline ($500 \mathrm{mg}, 4.27 \mathrm{mmol}$, 2eq) was added to the mixture of $\mathbf{1 a}(833 \mathrm{mg}, 2.13 \mathrm{mmol}, 1 \mathrm{eq}), \mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}(123 \mathrm{mg}, 0.106 \mathrm{mmol}, 5 \%), \mathrm{CuI}$
($21 \mathrm{mg}, 0.109 \mathrm{mmol}, 5 \%$) in 15 mL of dry THF under Argon. The mixture was refluxed 16 h and then cooled down. The mixture was quenched by $\mathrm{H}_{2} \mathrm{O}$ and then extracted with ethyl acetate. The organic extract was dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and evaporated under reduced pressure. The crude compound was purified by flash column chromatography (gradient elution, dichloromethane then hexane: ethyl acetate $=1: 1$) over silica gel (neutralized by $2 \% \mathrm{Et}_{3} \mathrm{~N}$ in hexane) to afford the compound 1 as a yellow solid in 67% yield (471 mg). ${ }^{1} \mathrm{H}$ NMR (400 MHz , DMSO- d_{6}) $\delta 7.15(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 4 \mathrm{H}), 6.55-6.53(\mathrm{~m}, 6 \mathrm{H}), 5.57(\mathrm{~s}, 4 \mathrm{H}), 1.18(\mathrm{~s}, 6 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100 MHz, DMSO-d d_{6}) $\delta 149.4,139.0,132.4,131.5,113.6,108.4,98.9,82.7,56.2,22.4$; HRMS (FAB+) calcd for $\mathrm{C}_{23} \mathrm{H}_{20} \mathrm{~N}_{2}$: 324.1626; found 324.1641.

2,5-bis(4-aminophenylethinyl)furan (2)

The compound 2 was prepared by a similar procedure to the preparation of compound $1 .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{DMSO}-d_{6}$) $\delta 7.21(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 4 \mathrm{H}), 6.78(\mathrm{~s}, 2 \mathrm{H}), 6.56(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 4 \mathrm{H}), 5.70(\mathrm{~s}$, $4 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($\left.100 \mathrm{MHz}, \mathrm{DMSO}-d_{6}\right) \delta 150.2,137.0,132.6,115.5,113.6,106.3,95.9,76.6 ;$ HRMS (FAB+) calcd for $\mathrm{C}_{20} \mathrm{H}_{14} \mathrm{ON}_{2}$: 298.1106; found 298.1107.

2,5-bis(4-aminophenylethinyl)thiophene (3)

The compound 3 was prepared by a similar procedure to the preparation of compound $1 .{ }^{1} \mathrm{H}$ NMR (400 MHz, DMSO- d_{6}) 7.21-7.19 (m, 6H), $6.55(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 4 \mathrm{H}), 5.66(\mathrm{~s}, 4 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100 MHz , DMSO- d_{6}) $\delta 149.9,132.6,131.4,123.6,113.6,107.0,96.0,79.4$; HRMS (FAB+) calcd for $\mathrm{C}_{20} \mathrm{H}_{14} \mathrm{~N}_{2} \mathrm{~S}$: 314.0878; found 314.0875.

1,4-bis(4-acetamidophenyl)-5,5-dimethylcyclopenta-1,3-diene (4a)

A mixture of 1a ($426 \mathrm{mg}, 1.09 \mathrm{mmol}$), 4-acetamidophenylboronic acid ($489 \mathrm{mg}, 2.73 \mathrm{mmol}$), $\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}(125 \mathrm{mg}, 0.108 \mathrm{mmol})$, and $\mathrm{K}_{2} \mathrm{CO}_{3}(753 \mathrm{mg}, 5.46 \mathrm{mmol})$ in 21 mL of nitrogen-purged ethanol:toluene:water (1:1:1) was stirred at $100^{\circ} \mathrm{C}$ overnight. The resulting mixture was cooled
down, quenched with water, and extracted with ethyl acetate. The combined organic layers were washed with brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated in vacuum. Purification by flash chromatography on silica gel (gradient elution hexane: ethyl acetate $1: 1$ to $0: 1$) afforded the coupling product $\mathbf{4 a}$ as a red solid in 70% yield (272 mg). ${ }^{1} \mathrm{H}$ NMR (400 MHz , DMSO- d_{6}) $\delta 9.98$ ($\mathrm{s}, 2 \mathrm{H}$), 7.61-7.55 (m, 8H), $6.83(\mathrm{~s}, 2 \mathrm{H}), 2.05(\mathrm{~s}, 6 \mathrm{H}) ; 1.43(\mathrm{~s}, 6 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100 MHz, DMSO$\left.d_{6}\right) \delta 168.1,155.6,137.8,129.5,126.3,124.6,118.9,52.4,24.0,23.2$; HRMS (FAB+) calcd for $\mathrm{C}_{23} \mathrm{H}_{24} \mathrm{O}_{2} \mathrm{~N}_{2}: 360.1838$; found 360.1852 .

1,4-bis(4-aminophenyl)-5,5-dimethylcyclopenta-1,3-diene (4)

To a solution of compound $\mathbf{4 a}(94 \mathrm{mg}, 0.26 \mathrm{mmol})$ in 5 mL of ethanol was added $10 \mathrm{~N} \mathrm{KOH}(1.0$ $\mathrm{mL}, 10.0 \mathrm{mmol}$) and the mixture was stirred at $100^{\circ} \mathrm{C}$ for 24 h . The resulting mixture was cooled down, quenched with water, and extracted with ethyl acetate. The combined organic layers were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated in vacuum. Purification by flash chromatography on silica gel (ethyl acetate: hexane= 1:1) afforded the product 4 in 55% yield (40 mg). ${ }^{1} \mathrm{H}$ NMR (400 $\left.\mathrm{MHz}, \mathrm{DMSO}_{6}\right) \delta 7.29(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 4 \mathrm{H}), 6.57-6.55(\mathrm{~m}, 6 \mathrm{H}), 5.14(\mathrm{~s}, 4 \mathrm{H}), 1.36(\mathrm{~s}, 6 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100 MHz, DMSO- d_{6}) $\delta 155.0$, 147.2, 126.7, 123.1, 121.4, 113.8, 52.0, 23.6; HRMS ($\mathrm{FAB}+$) calcd for $\mathrm{C}_{19} \mathrm{H}_{20} \mathrm{~N}_{2}$: 276.1626; found 276.1637.

2,5-bis(4-aminophenyl)furan (5)

${ }^{1} \mathrm{H}$ NMR (400 MHz, DMSO- d_{6}) $\delta 7.40(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 4 \mathrm{H}), 6.59(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 4 \mathrm{H}), 6.56(\mathrm{~s}, 2 \mathrm{H})$, $5.28(\mathrm{~s}, 4 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100 MHz , DMSO- d_{6}) δ 152.2, 148.0, 124.3, 118.8, 113.9, 103.7; MS (FAB^{+}): $250\left(\mathrm{M}^{+}, 100\right)$.

2, 5-bis(4-aminophenyl)thiophene (6)

6
${ }^{1} \mathrm{H}$ NMR (400 MHz, DMSO- d_{6}) $\delta 7.29(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 4 \mathrm{H}), 7.10(\mathrm{~s}, 2 \mathrm{H}), 6.57(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 4 \mathrm{H})$, $5.29(\mathrm{~s}, 4 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100 MHz, DMSO- d_{6}) $\delta 148.3,141.3,125.9,121.8,121.2,114.0$; MS (FAB^{+}): $266\left(\mathrm{M}^{+}, 100\right)$.

Figure S1. Crystal structure of $\mathbf{4 a}$ (crystallized in DMSO). Dihedral angle Between C5-C10 is 13° and C11-C15 is 19°. Brown = Carbon; Yellow $=$ Hydrogen; Red $=$ Oxygen; Green = Nitrogen; Blue $=$ Sulfur .

Measurement, Data Analysis and Additional Data

Single molecule conductance measurements are performed using a home-built modified Scanning Tunneling Microscope (STM). The STM tip is a 0.25 mm diameter gold wire (99.998%, Alfa Aesar). The substrate is a gold-coated (99.999%, Alfa Aesar) mica surface. A commercial single-axis piezoelectric positioner (Nano-P15, Mad City Labs) is used to achieve sub-angstrom level control of the tip-substrate distance. The STM is controlled using a custom program using IgorPro (Wavemetrics, Inc.). All of the experiments are conducted at room temperature in ambient conditions.

In the STM-Break Junction technique, the tip is repeatedly brought in and out of contact with the substrate, while a constant bias is applied and current is measured. A gold metal contact with a conductance of at least $5 \mathrm{G}_{0}$ is formed before pulling out. Tip is withdrawn from the
substrate at a speed of about $16 \mathrm{~nm} / \mathrm{s}$, and current is recorded at a fixed applied bias voltage of 225 mV at a 40 kHz data acquisition rate. The target molecules are introduced in solution with the same concentration $\sim 0.2 \mathrm{mM}$ in solvent $1,2,4$-Trichlorobenzene. Right after the contact breaks, a target molecule in the vicinity can bridge the gap so that its conductance ($\mathrm{G}=\mathrm{I} / \mathrm{V}$) can be measured. Tens of thousands of conductance vs. displacement traces were obtained for each molecule studied and conductance histograms are constructed without any sort of data selection.

Below we show the 2 d conductance histograms of molecule 4,5 and 6 . The same data sets are used to create the log-binned histograms included in the manuscript.

Figure S2 2D histograms for 4, 5 and 6 showing conductance peak extending over a distance of around 0.8 nm relative to the break of the G_{0} contact.

References:

1.Stephens, C. E.; Tanious, E.; Kim, S.; Wilson, D. W.; Schell, W. A.; Perfect, J. R.;

Franzblau, S. G.; Boykin, D. W. J. Med. Chem. 2001, 44, 1741.
2. Gonzalez, J. L.; Stephens, C. E.; Wenzler, T.; Brun, R.; Tanious, F. A.; Wilson,
W. D.; Barszcz, T.; Werbovetz, C. A.; Boykin, D. W. Eur. J. Med. Chem. 2007, 42, 552.
3. Agosta, W. C.; Smith, A. B., III. J. Org. Chem. 1970, 35, 3856.
4. Comins, D. L.; Dehghani, A. Tetrahedron Lett. 1992, 33, 6299.

